Complete standardized factory assembled packages with Roth 350°F one foot NPSH condensate pumps suitable for condensate temperatures up to 350°F, capacities up to 150 GPM, and differential pressures up to 125 PSIG.
INDUSTRIAL AND PROCESS STEAM

The chemical industry uses industrial steam in reactors, evaporators, distillation units, concentrators, and autoclaves in processing fats, oils, fatty alcohols, fermentation products, soaps, and detergents. Steam is used in hydrogenation polymerization, and solvent recovery processes.

Industrial steam is also used in the rubber industry for pressing and curing with hot presses, autoclaves, vulcanizers, and devulcanizers. It is used in the paper industry to heat digesters and rolls, in the food industry for melters and cookers, and in concrete block plants for drying and curing lightweight blocks. It is also required in dairies, laundries, dry cleaning plants, and recapping shops.

Saturated steam at pressures up to 125 PSIG proves the most economical heat source for industrial processes in these industries because of low energy cost per BTU and because of high rate of heat transfer and reliable and accurate range control.

SYSTEM DESIGN PROBLEMS

Designers of industrial steam equipment and systems have refined the use of steam in these industries to a high level of efficiency. Up to the present time, however, 125 PSI systems have incurred losses at higher temperature usage because of inadequate condensate return systems.

A high proportion of the equipment installed in industrial steam systems condenses steam at temperatures above 250°F. Condensate return and boiler feed units designed for lower temperatures encounter many difficulties at these higher industrial temperatures.

Due to the lack of availability of high temperature condensate stations in the past, plant designers have found it necessary to flash high temperature returns to atmosphere in order to reduce temperature and pressure to within the limits of low temperature return stations.

PLANT OPERATING LOSSES

In this situation plant operators were forced to accept heat losses or risk returning higher temperatures to the low temperature return units with consequent breakdowns, idle time, and operating losses.

A vast improvement in this situation was the introduction in 1967 of Roth 250°F Code Stations covered by Roth Bulletin A204. These pumping units utilize non-vented ASME code receivers and Roth low NPSH hot condensate pumps for condensate temperatures up to 250°F.

A further advancement in Roth code stations, for temperatures up to 350°F, was announced in 1971.

ROTH 350°F CODE STATIONS

The Roth jacketed condensate pumps provided on 350°F code stations are ideal mechanisms for moving boiling water. Due to their patented design no cavitation can occur handling boiling water with as low as one foot suction head.

A special balanced mechanical seal with jewel-hard tungsten carbide or silicon carbide seat is set in an isolated chamber and water jacketed to control seal operating temperature.

Automatic control of cooling water at the seal is provided by a flow switch and a solenoid valve in the cooling water line electrically interlocked with the pump motor starter.

A probe control in the condensate receiver shuts a solenoid valve controlling the cooling water flow and simultaneously opens the motor starter, stopping the pump when the condensate drops to low level in the receiver.

When receiver water reaches high level the probe control opens the solenoid valve and closes one point in the starter control circuit. The cooling water then actuates a flow switch which closes, completing the starter control circuit. The starter then closes, starting the pump motor after cooling water flow is assured.

Cooling water drops through an air gap into a drain cup after circulating through the seal jacket so that there is visible evidence of coolant flow whenever the pump is running.

The condensate receiver is a nonvented ASME code vessel rated for 200 PSI. Hot condensate at temperatures up to 350°F may be collected and transferred by the pump directly to the boiler.

Due to the low NPSH characteristics of the pump, the entire unit is less than 60 inches high. Condensate return piping may be set at 36 inches above floor level. This low silhouette design permits collection of high temperature condensate from kettles, autoclaves, platen presses, and a variety of other high temperature condensing equipment.

FLASH SERVICE

In addition to serving as a dependable collection and return station for high temperature condensate, Roth 350°F code stations may be used to flash steam from returning condensate for use in applications requiring steam at the temperature and pressure of the returns.

No adverse effect will result on the unit or the pump as a result of such flashing.

MAXIMUM SYSTEM EFFICIENCY

Plant operators who install Roth 350°F code stations can eliminate the problems of steam and heat losses, caused in the past by flashing high temperature condensate, and the high maintenance on equipment which was actually designed for lower temperatures.

Roth 350°F code stations will return 100% of high pressure condensate to the boiler without cavitation and with only normal annual pump maintenance.
SELECTION TABLES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 lb./Hr.</td>
<td>5.0 GPM</td>
<td>10</td>
<td>10.0</td>
<td>HC2520</td>
</tr>
<tr>
<td>1500 lb./Hr.</td>
<td>7.5 GPM</td>
<td>10</td>
<td>10.0</td>
<td>HC3010</td>
</tr>
<tr>
<td>5000 lb./Hr.</td>
<td>10.0 GPM</td>
<td>10</td>
<td>20.0</td>
<td>HC5020</td>
</tr>
<tr>
<td>7500 lb./Hr.</td>
<td>15.0 GPM</td>
<td>10</td>
<td>30.0</td>
<td>HE7510</td>
</tr>
<tr>
<td>10,000 lb./Hr.</td>
<td>20.0 GPM</td>
<td>10</td>
<td>40.0</td>
<td>HF1010</td>
</tr>
<tr>
<td>12,500 lb./Hr.</td>
<td>25.0 GPM</td>
<td>10</td>
<td>50.0</td>
<td>HF1510</td>
</tr>
<tr>
<td>15,000 lb./Hr.</td>
<td>30.0 GPM</td>
<td>10</td>
<td>60.0</td>
<td>HF1820</td>
</tr>
<tr>
<td>17,500 lb./Hr.</td>
<td>37.5 GPM</td>
<td>10</td>
<td>75.0</td>
<td>HG2520</td>
</tr>
<tr>
<td>20,000 lb./Hr.</td>
<td>40.0 GPM</td>
<td>10</td>
<td>80.0</td>
<td>HG2210</td>
</tr>
<tr>
<td>22,500 lb./Hr.</td>
<td>45.0 GPM</td>
<td>10</td>
<td>90.0</td>
<td>HG2515</td>
</tr>
<tr>
<td>25,000 lb./Hr.</td>
<td>50.0 GPM</td>
<td>10</td>
<td>100.0</td>
<td>HG3020</td>
</tr>
<tr>
<td>27,500 lb./Hr.</td>
<td>55.0 GPM</td>
<td>10</td>
<td>110.0</td>
<td>HG3040</td>
</tr>
<tr>
<td>30,000 lb./Hr.</td>
<td>60.0 GPM</td>
<td>10</td>
<td>120.0</td>
<td>HG3075</td>
</tr>
<tr>
<td>35,000 lb./Hr.</td>
<td>75.0 GPM</td>
<td>10</td>
<td>130.0</td>
<td>HG3075</td>
</tr>
<tr>
<td>40,000 lb./Hr.</td>
<td>85.0 GPM</td>
<td>10</td>
<td>140.0</td>
<td>HG3075</td>
</tr>
<tr>
<td>45,000 lb./Hr.</td>
<td>95.0 GPM</td>
<td>10</td>
<td>150.0</td>
<td>HG3075</td>
</tr>
</tbody>
</table>
Furnish and install as called for on the drawings, one Roth Model _____ (specify simplex or duplex) 350˚F code station suitable for GPM at a differential pressure of PSI at 350˚F and 1 ft. NPSH. The unit shall consist of the following components:

1. One (substitute two for duplex) Roth 350˚F condensate pumps certified by the manufacturer for a minimum of____ GPM of 350˚F water at _____ PSI with 1 ft. net positive suction head. The pump shall be guaranteed by the manufacturer for one year against defects in workmanship and material. The pump shall contain a water cooled mechanical seal with a tungsten carbide seat suitable for 350˚F water. Pump must handle full rated capacity without loss or vapor binding at 1 ft. NPSH.

2. One horizontal steel receiver of ___ gallon capacity, 200 PSIG standard construction with ASME Code stamp, bolt-on channel legs and connections for inlet, outlet, drain, thermometer, vapor vent, pressure gauge, gauge glass, and probe control assembly. Receiver shall be removable in the field.

3. Piping between the receiver and pump to consist of one (substitute two for duplex) diagonal section containing a flexible connector, gate valve and Y-Type strainer to insure minimum pressure drop between receiver and pump. All pipe fittings to meet ANSI code.

4. One (substitute two for duplex) 1750 / 3500 RPM ODP motor for phase _____ volt current. Motor shall not be loaded to operate beyond the 1.0 rating.

5. (a) Specify for Simplex Units.
 i. One General purpose three phase, three pole magnetic starter with reset, and with three overload heaters.
 ii. One solid state probe controller for _____ volt control circuit current.
 iii. One terminal block.

(b) Specify for Duplex Units.
 i. Two general purpose three phase, three pole magnetic starters with resets, and with three overload heaters in each starter.
 ii. Two solid state probe controllers for volt control circuit current.
 iii. One terminal block.
 iv. One electrical alternator.

The above controls shall be panel mounted and wired in a Nema 1 enclosure. Starter(s) shall be wired to the motors.

Terminals for connecting control circuit current shall be provided on the terminal block.

6. For 250˚F-310˚F interconnecting piping installed from flow switch to pump water jackets and to visual flow gap(s). One Y strainer for coolant water supply.

7. For 310˚F-350˚F pump manufacturer shall provide a suitable heat exchanger (water-to-water, or air-to-water) for reducing the recirculated water from the original temperature to not over 250˚F. Manufacturer of pump shall supply all necessary recirculation piping or tubing, connected and ready to install on the unit.

8. One thermostat air vent.

9. One (substitute two for duplex) Roth enclosed coupling guard.

10. One 1/2 inch 175 lb. pressure polished brass water gauge of proper size with bronze valve bodies conforming to ASTM specification B62, 1/8 inch bronze drain cock, non-heat round die cast valve wheels, 3/16 inch bronze guard rods and 5/8 inch high pressure glass tubing.

11. One stem mounted bi-metal thermometer with 3 inch dial 50˚F-500˚F range, 2 ½ inch stem and 1/2 inch connection.

12. Two (substitute three for duplex) stem mounted pressure gauges with 3 1/2 inch dial, drawn steel case, 0-300 lb. range, phosphor bronze tube and brass socket.